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ABSTRACT-Individual thermals rising through the at- 
mosphere may encounter the wake of one or more thermals 
that  started their rise at a n  earlier time. Laboratory simu- 
lations show that the growth rate of second and third 
thermals in a series is enhanced relative t o  that  of a solitary 
thermal. The enhancement is due to  a gain in momentum 
from the wake of a preceding thermal, and equations are 
developed for predicting the amount of enhancement as a 
function of the delay time between thermals. Agreement 

with expcrimental data is good for first and second ther- 
mals. The third thermal was found to have a growth rate 
w r y  similar to that  of a second thermal. Theory agrees to  
the extent that  only a slight increase is predicted, and this 
amount could have been lost within the experimental error. 
Thus, it appears that  by the time the third thermal in a 
series occurs, a n  equilibrium condition has been reached 
as far as the thermal growth rate and velocity field are 
concerned. 

1. INTRODUCTION 

Free convection is convective motion that is due 
entirely to buoyancy forces that arise from variations in 
temperature or density. In the atmosphere, for example, 
free convection occurs when an air parcel has a temperature 
slightly warmer than its environment and rises because 
of its buoyancy. Cumulus-type clouds that are formed by 
free convection are often referred to as thermals. Elements 
of free convection have been simulated in the laboratory 
by the release of a buoyant element to form a solitary 
thermal in a neutial environment. The solitary thermal 
has been studied in great detail in an effort to understand 
convection in the atmosphere. The probable occurrence 
of successive convective elements originating from the 
same point due to terrain irregularities, for example, has 
stimulated an interest in the investigation of the effect of 
the wake of a preceding thermal on a following thermal. 
The purpose of this work is to investigate the wake effects 
on second and third thermals in a series. We will utilize 
results obtained by previous investigators of solitary 
thermals. 

In the study of free convection, thermals from instan- 
taneous point sources and plumes from maintained point 
sources have been investigated extensively. Batchelor 
(1954) investigated free convection in fluids and showed 
how experiments of this type were related to atmospheric 
convection by describing the common ground between 
them. He used dimensional analysis and similarity argu- 
ments in his treatment of plumes and thermals for both 
laminar and turbulent flow. Morton et al. (1956) devel- 
oped two separate sets of equations to describe the con- 
servation of volume, momentum, and buoyancy for the 
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plume and thermal. Variables of the plume were given as 
a function of height and for the thermal as a function of 
time. The conservation equations of Morton et al. (1956), 
modified to include wake effects, form the basic theory 
for the solitary thermal used in this work. The modifica- 
tion for the second and third thermals presented in this 
paper is based on the assumption that the wake velocity 
decays according to the same law as the cap velocity. 

Scorer (1957) conducted experiments to  determine the 
proportionality constants that arise from dimensional 
analysis. The experimental technique used was to inject 
a small amount of cloud material, a negatively buoyant 
dyed fluid, into a tank of water and to iecord the growth 
photographically. Woodward (1959) used the same experi- 
mental technique, along with tracer particles, to deter- 
mine the circulation in a thermal. Streak photographs 
showed that the vertical velocity a t  the center of the 
thermal was twice as great as a t  the top; and the down- 
ward velocity a t  the edge was about half as great as the 
vertical velocity of the top (thermal cap). A visible cir- 
culation pattern was observed that is a result of cloud 
elements moving upward in the center and downward a t  
the periphery of the thermal. This resembles a ring or 
toroidal-type vortex. 

The effect of a rotation field on a thermal, although not 
considered in this work, has been investigated. Wilkins 
et al. (1969) modified the conservation equations of Morton 
et d .  (1956) to  include the effect of a rotation field on a 
thermal. The rotation was shown to suppress the growth 
of the thermal, and this effect was verified experimentally. 

Wake effects on second thermals in a series were in- 
vestigated both experimentally and theoretically by 
Wilkins et al. (1971a, 19716), who modified the momentum 
conservation equation of Morton et al. (1956) to state the 
conservation of relative momen tum of a wake-imbedded 
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second thermal. Schauss (1970) developed analytic solu- 
tions for the second thermal through the assumption of an 
exponential decay of the wake velocity. Wilkins et al. 
(1971~) also modified the momen tum conservation equa- 
tion to  include the interaction of forces due to buoyancj 
and rot ation -suppression. They developed analy ti c a1 solu- 
tions for the second thermal by assuming that the wake 
velocity is proportional to the vertical velocity of the pre- 
ceding thermal and the magnitude of the effect is de- 
pendent on the amount of the wake intercepted by the 
second thermal (increasing with growth). The vertical 
velocity for both the first thermal and its wake was as- 
sumed to decay according to the same law (inverse square 
root of time). 

The theoretical development of wake effects on second 
and third thermals in a series, presented in this paper, is 
based on the same modified conservation equations except 
that  the assumption concerning the effect on the thermal 
of intercepting only a portion of the wake is dropped. The 
dropped assumption seemed rather artificial. It made the 
problem tractable, but the solutions obtained do not fit 
the new experimental data nearly as well as the numerical 
solutions given in this paper. The wake velocity encoun- 
tered by a thermal will simply be assumed to equal the 
vertical velocity of the preceding thermal, corrected for 
the time delay between thermals. The momentum equa- 
tion will also be generalized for the nth thermal in a series. 

The time interval between the successive thermals is of 
basic importance in the investigation of wake effects on 
succeeding thermals. A “short” time delay will result in 
a second thermal rapidly overtaking the preceding thermal. 
A “long” time delay can be described as one that allows 
the wake velocity to decay to the point where i t  has little 
or no effect on succeeding thermals. An “intermediate” 
time delay results in an increased vertical velocity of the 
second thermal but does not necessarily result in over- 
taking. Overtaking, if it occurs, is a problem in this 
investigation of wake effects because the second thermal 
is no longer entirely in the wake of a preceding thermal. 
This mould invalidate one of our assumptions. This in- 
vestigation is limited to the consideration of wake effects 
and, for this reason, an intermediate time delay was 
selected to assure that overtaking did not occur in the 
experiments. 

Wilkins et al. (1971~) encountered an experimental dif- 
ficulty that hampered the investigation of second t,hermals 
in a series. The difficulty was that, after a short period of 
time, the second thermal began to be obscured by cloud 
elements trailing behind the preceding one. This made it 
difficult to distinguish the boundaries of the second 
thermal. This, coupled with the fact that  the lifetime of 
their second thermals was only about 5s, limited the 
opportunity to study the growth of the second thermal. 
The experimental technique for the present investigation 
is to use a thermal with a longer lifetime and to provide an 
unobstructed view of the thermal under investigation. 
The lifetime of the thermal id increased by using a small 
quantity of low-buoyancy dyed fluid as cloud material in 
the simulation. An unobstructed view of the wake-affected 

TABLE 1.-Symbols used  in this p a p e r  

E 
F 
V 

b 
9 
h 
t 

W 

ff 

P 

PO 
7 

entrainment rate 
buoyancy force per unit inass 
thermal volume 
vertical velocity of thermal 
sphere-equivalent radius of thermal 
gravitational acceleration 
height of the thermal 
time 
entrainment constant 
density of buoyant elcment 
density of environment 
time delay between thermal injections 

thermal is provided by making the preceding thermal 
transparent (by simply omitting the dye). 

2. GOVERNING EQUATIONS 

The development of the governing equations for a 
second and third thermal in series involves modifying the 
basic conservation equations of Morton et al. (1956) for 
a solitary thermal to account for the momentum gained 
from a wake. The key assumptions of Morton et al. are: 
(I) entrainment is proportional to vertical velocity; (2) 
lateral profiles of the mean vertical velocity and mean 
buoyancy force are similar a t  all levels; and (3) local 
variations of density are small when compared with the 
reference density, which is defined here as the density of 
the environmental fluid. The same assumptions are made 
in the development to follow. 

The symbols used in the development are given in 
table 1. Throughout the paper, subscripts of 1, 2, and 3 
will be used to denote terms applying to first, second, and 
third thermals, respectively. The units of all terms will 
be in the cgs system. 

The three basic conservation equations developed by 
Morton et al. (1956) are: 

and 

A set of solutions for the conservation eq (1)-(3) was 
given by Morton et al. (1956). These are given below with 
some change of notation: 

and 
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The boundary conditions are b=O when t=O and 
momen tum = 0 when t = 0. 

Second Thermal in Series 

The equation for the vertical velocity, w,, of a preceding 
thermal, corrected for lapsed time, is used to estimate a 
wake velocity in the development of the theory for the 
second thermal in a series. This procedure entails the 
assumption that the first thermal in a series will behave as 
a solitary thermal and will not be affected by the thermal 
following in its wake. Probably such an assumption is 
reasonable up to the time that the first thermal is over- 
taken by the second one. We also assume that the ambient 
density, po, is unaffected by the mixing of preceding 
thermals into the environment. This assumption is 
justified in the single-source convection discussed here 
but probably not in the case of multiple sources, as shown 
by Sasaki (1967). 

Equation (2) is the only one of the set [eq (1)-(3)] 
developed by Morton et al. (1956) that is changed. The 
change, it will be seen, is to account for an increase in 
momentum of the second thermal that is gained from the 
wake velocity of the preceding thermal. I n  the case of 
the second thermal, the wake velocity a t  time t i s  assumed 
to be equal to the vertical velocity of the preceding thermal 
at time t+7  where 7 is the time delay of the second thermal 
injection. 

The conservation equations for the second thermal are: 

(7) 

momentum (" nb:wz)=F+% d 4  ( 5  nbiwl)j ( 8 )  
dt 3 

and 

where 

The additional term in the momentum eq (8) has been 
underlined. 

From the integration of the momentum eq (8) and the 
initial condition bp=O at t=O,  we have 

From eq (7), the relation 

1 dbz wz=- - 9  
dt 

when substituted into eq (11) along 
for w l  from eq (lo),  gives 

(12) 

with the expression 

Equation (13) is nonlinear but is easily solved for bz by 

numerical methods. It is then possible to solve numerically 
for the other variables; that is, vertical velocity from eq 
(12), height from 

and entrainment rate from 

1 dVz 3 db 
" V ,  d t  bz d t  
E -_ __=- -'. 

Equation (13) may be written in the form 

y3( y' - 1) =x(x2- 1) (16) 

where the variables are nondimensionalized as 

and 

The prime denotes a derivative with respect to x. The 
assumption a=al=az has been made to obtain eq (16). 
This equation may be solved easily by numerical methods. 
The solution is valid for all values of T ,  a, and F provided 
only that overtaking does not occur. Thus, b2 versus t for 
various combinations of values of the parameters T ,  a, 
and F may be determined from a single curve of y versus 2. 

Third Thermal in Series 

The theoretical development for the third thermal in a 
series parallels that of the second. The momentum con- 
servation equation for the third thermal is 

The new term in eq (19) (underlined) contains the vertical 
velocity, w,, of the second thermal a t  time t + r where T is 
the delay between the second and third thermals. The 
value of wz is assumed to be equal to the wake velocity 
encountered by the third thermal. I t  should be noted that 
any possible momentum gain from the wake of the first 
thermal in the series is also included because wz was 
computed from eq (12) and (13). 

The momentum eq (19) can be simplified by integration 
and by application of the boundary condition b3=0 a t  
t=O to 

b:w3=g+ b:wz. (20) 

Further simplification can be made by substituting for 
w2 from eq (12) and for w3 from 

which is obtained from the volume equation in the form 
of eq (7) but for the third thermal (Le., all subscripts=3). 
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This changes eq (20) to the form 

Equation (22) is easily solved by numerical methods. 
Other characteristics of the third thermal may be deter- 
mined from equations that have the same form as those 
employed for the second thermal. 

Comparison of eq (22) with eq (13) shows that the 
generalized momentum equation for the nth thermal in a 
series must be 

which, for any n, can be iterated stepwise from a previously 
solved form such as eq (13) for n=2.  Thus, we can in 
principle determine numerically the growth properties for 
any given number of thermals in a series, but, practically 
speaking, we need not continue beyond the point a t  which 
an equilibrium condition is reached. Some insight into 
this can be obtained from the generalized momentum 
equation mit ten in the form 

The last term gives the amount of momentum gained from 
the wake of the preceding thermal, which is not the same 
as its total momentum because it includes only that 
amount of its mass that falls within the volume of the 
nth thermal. This is much smaller at any time t than the 
volume of the (n- 1) th thermal. By iterating eq (24) back 
to n=2, we see from eq (13) that there is a contribution 
to the wake velocity from wl, which, by the time the nth 
thermal is released, is proportional to  

[t+ (n- 1)7]-1’2. 

This shows that the contribution of earlier thermals to 
the wake velocity may become comparatively small after 
a few have evolved, and thus the system does approach 
an equilibrium condition. 

The validity of our assumption that the wake velocity 
is the same as the cap velocity of the preceding thermal 
must become more suspect as the spacing between ther- 
mals increases. The other constraint is that r must be 
sufficiently long that overtaking does not occur. Thus, we 
see that the range of r over which so simple a theory may 
be applied is quite limited. 

3. EXPERIMENTS AND DATA ANALYSIS 

The experimental investigations of second and third 
thermals in series mere conducted in a Plexiglas tank 
183 cm deep and 75 cm in diameter? The tank was filled 
with water to a depth of 158 cm. 

To avoid the problem encountered by Wilkins et al. 
(1971~)  of not being able to distinguish second thermals 
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from first thermals, me devised a new technique of cloud 
injection in which a clear salt solution was used for all 
thermals preceding the one under observation. The blue- 
dyed cloud material consisted of 50 percent mater and 
50 percent Sheaffer’s Scrip Writing Fluid (Washable Blue 
#432) made into a 6.6-percent salt solution. Both clouds 
had a density of 1.045 g . ~ m - ~ .  Sufficient quantities of both 
cloud materials were made to insure uniformity through- 
out all the experiments conducted. 

The cloud elements \\*ere injected into the tank of water 
from the top by quickly inverting a small beaker of mate- 
rial into the water. The injections consisted of 15 cm3 
each. The time interval between injections in series was 
20 s in all experiments. Data mere recorded a t  2-s intervals 
for 20 s with a Nikon F Photomic-T 35-mm camera 
equipped with motor drive and remote triggering. A 
28-mm F3.5 wide-angle lens was used to increase the 
viewing area. The use of backlighting with fluorescent 
lamps diff used through white tracing paper eliminated 
unwanted reflections. 

The data were extracted using photogrammetric 
methods that have been described by Wilkins et al. 
(1969). The two cloud features that can be measured 
quantitatively for comparison with theory are cloud 
volume and height of rise. The volume estimate was made 
by assuming axial symmetry and dividing the thermal 
image into clisks 2 cm in height. The diameter of each 
disk was measured for the purpose of calculating its 
volume. The widest distance from edge to edge of the 
disk \vas considered to be the diameter, introducing a 
negligible error. A volume estimate was obtained by 
summing up the volumes of all disks within the outline 
of the cloud. The height, h, of the thermal was measured 
directly from each frame, as simply the distance from the 
point of injection to the top of the thermal. 

The values of b and h a t  2-s intervals were obtained 
for each run for the three types of thermals: solitary 
(10 runs), second (11 runs), and third (9 runs). Mean 
values of b and h a t  2-s intervals for each type of thermal 
were calculated a t  each data point. 

The theory was developed on the assumption that the 
thermal originates from an instantaneous point source 
of buoyancy. The point source cannot be produced experi- 
mentally because it has as one of its boundary conditions 
b=O when t = O .  The experimental data were, therefore, 
subjected to a small virtual origin correction to make a 
satisfactory comparison with theory. A straight line was 
fitted to plotted values of h2 versus t ,  using the method of 
least squares. The point at which the straight line inter- 
cepted the t axis (h2=0) defined the location of the virtual 
origin, which was then translated to the intercept point 
to satisfy the boundary condition h2=0 when t=O.  The 
amount of translation was the time correction (about 
1.5 s) to be applied to the data. 

The entrainment rate, E, was calculated using the 
finite-difference form 

1 AV 
v At  

E=- - 

where AV is the incremental change of volume in a n  



L 
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FIGURI.: 2.-Photographs of t.he throe types of t.hcrnials a t  data 
time 1= 10 s. 

FIGURIC 1.-Sequential photographs of a second thermal in a series, 
tho prcceding one being tranqmrent . Time delay txtwecn thermals 
is 20 s. 

increment of time At .  Values of V t d  A P  were taken 
from smoothed rncan value curves of volunic versus 
time. 

Ninet,--five-pcrcent confidence limits for thc populntion 
mean were computctl iising the saniplc nienns ~ i i i d  :is- 
sinning A t-distribution. The confidence limits provitlc 
boiiiids to the estiriiiite of the populiition mean. In this 
case, wc can be 95-percent, certain tlirit thc trnc inc~in 
of the populntion will lic bct \\-em thc limits shoir-n. Thc 
limits werc plottccl to give some idea of the reliability of 
the mean values for comparison with theory. 

4. COMPARISON OF LABORATORY 
SIMULATION WITH THEORY 

The algorithm used in solving t,he theoretical equat.ions 
for the second and third t,l-icrrnnls in series \viis :I. foiirdi- 
order Runge-Kut,ta niet_hocl using Gill cocfficient.s (Rnl- 
ston and Wilf 1960). The s t i d i i g  point, usctl in t.his 
rnetliod was selected by t,lie inetliod shown in t,he :iiq)eiidis. 
The met,hod docs not permit, st,art,ing with t= 0 bccmse 

thc method clcpcnds on an evalrintion of the first cleriva- 
tive, and, at this point, it is undefined. The starting 
point i.: iniportnnt because, if it is tinomaloiis, the whole 
( w r w  will be crroneous. 

A value of the entrainincnt constant, a, wis deter- 
niinecl for each t -pc  of therninl using the csperiment8al 
rnlucs of sI)licrc-equi\-iileIit rutliiis tind height. The values 
of (I! found were 0.244, 0.220, antl 0.217 for the solitary, 
second, nntl third tlicrin:ils, respectively. These values 
rire consistcnt with valrics found by other investigators : 
0.25 (Scorer 1957), 0.20-0.25 (Turner 1963), and 0.20 
(JTilkinq ct ail. 1969). Values of a tletermined esperi- 
rncnttilly u c  usri:illy in the range of 0.20-0.25. The 
theorcticiil ciilciilations for the various t>?pes of thermals 
\\-ere cnrrietl out using the valne of CY that was tlctcrmiried 
cspcrimentall!- for tlitit i , ~  pc, tis this sceiiis to provide 
thc best test of thc theory. 

The  seqiientid phot ogriiphs in figurc I show the second 
thcrnitd in :I, serics tis seen in the cspcriments. This figure 
illiistratcs the iinohstrrictetl view of thc second thermal 
when the transptircnt cloud matcrial is used for thc 
prccctlirig therin:il. I t  shoultl bc notctl also that the 
swontl tlieriniil is vcrj- sirriilrir in nppeiirririce to :t solitary 
thermnl, :is scen 1)~- comptirison with figure 2, antl thut it 
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FIGURE 3.-Theoretical curve of sphere-equivalent radius VS. time 
for a solitary thermal compared with mean values of experimental 
data. experimental data. 

FIGURE 5.-Theoretical curve of sphere-equivalent radius vs. time 
for a second thermal in series compared with mean values of 

thermals also resemble photographs of the second ther- 
mal in series. For comparison, photographs of the three 
types of thermals at  t= 10 s are shown in figure 2. The 
solitary thermal can be easily distinguished from the 
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FIGURE 4.-Theoretical curve of height vs. time for a solitary ther- 
mal compared with mean values of experimental data. 

FIGURE 6.-Theoretical curve of height vs. time for a second thermal 
in series compared with mean values of experimental data. 
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The approximate point of overtaking is easily deter- 
mined by plotting the height versus time curves of the 
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FIGURE 11.-Theoretical curves of sphere-equivalent radius vs. 
time and experimental mean values for the solitary, second, and 
third thermals. 

particular time delay, T ,  and the solitary thermal is put 
into proper time frame by the value of T selected. The 
intersection of the two curves will show the time at  which 
overtaking occurs. The point of overtaking for time delays 
of 5 and 10 s are shown in figure 8 for thermals of the 
same buoyancy as those used in this investigation. It is 
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interesting to note that the time required for overtaking 
to occur in the case of a 10-s delay is about twice as long 
as for the 5-s delay, suggesting a possible linear 
relationship. 

Figures 9 and 10 compare experimental data with 
theoretical values of sphere-equivalent radius and height 
of rise of a third thermal. The theoretical values of sphere- 
equivalent radius and height do not agree especially well 
with the experimental values after about t=6 s. It is 
obvious that the growth of the third thermal is slightly less 
than the theory would predict. 

Figures 11 and 12 show the sphere-equivalent radius 
curves and height curves for the three types of thermals 
simultaneously. These show enhancement in the growth 
of both the second and third thermals relative to that of 
the solitary thermal. The enhancement of the third thermal 
over the second thermal is not predicted to be as great as 
the enhancement of the second thermal 0~7er the solitary 
one. Prom the experimental data, we find that there is no 
significant difference between the second and third ther- 
mals. This is a t  least in the right direction to agree with 
theory, although the fit is less than perfect. 

Figure 13 shows the theore tical curves and experimental 
values of entrainment versus time. The theoreticnl curves 
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FIGURE 13.-Theoretical curves and experimental values of en- 
trainment vs. time. 

are all grouped very closely and show very little difference 
for t8he three types of thermals. The same is true for the 
experimcntal data points, and the agreement is also good 
for the magnitudes of the en trainmeiit rates. 

5. CONCLUSIONS 

The main contributions from the research reported here 
lie in the improvements in cloud simulation technique and 
in the theory for successive thermals. The new technique 
has provided more acciirate measurements of cloud growth 
and has avoided the obscuration of successive clouds due 
to merging. As more accurate measurements became avail- 
able, it became obvious that the earlier theory (Wilkins 
et al. 1971~)  for wake eflects needed to be changed, and 
this was accomplished. 

The theoretical development for second and third 
thermals in a series predicts that  successive enhancement 
of growth rate will occur due to momentum gains from the 
wakes of preceding thermals. The theory developed for the 
second and third thermals was based on conservation of 
total momentum to account for the enhancements. 

The close agreement of the theoretical and experimental 
results for the solitary thermal reaffirms the theory of 
AZorton et al. (1956). The importance of this agreement to 



the present analyeis is that our predictions for successive 
thermals are based on an exten ;ion of that theory. 

Experimental results of the second thermal do show, 
correctly, the amount of enhancement of the growth rate 
of the second thermal over that of the solitary thermal. 
This agreement tends to verify the theory regarding wake 
effects 011 a second thermal. The nondimensional solution 
of the momentum equation provides n descriptio11 of the 
second thermal for various values of cloud buoyancy and 
time delay, and the curve can be used with the height ver- 
sus time curve of the solitary thermal to predict when 
overtaking will occur for various time delays. 

The theoretical and experimental values for the third 
thermal do not agree especially well after about t=6  s. 
The experimental values for the second and third thermals 
show that there is no significnnt difference between them. 
This indicates that the third thermal is encounteriug a 
wake similar to  that encountered by the second thermal. 
It may be that an equilibrium condition is reached with 
only a very few thermals in a series. Another possible 
explanation is that, while the theory for the third thermal 
ipcludes momentum gain from the wake of the first ther- 
mal, experimentally, the wake was too dissipated (possibly 
due to viscosity) to be detected. During the observation 
of the third thermal, the age of the first thermal increases 
from 40 to 60 s. It is possible that tank wall effects may be 
present by thk time, although the solitary thermal is not 
observed to contact the bottom of the tank within 60 s. 

The results of this investigation suggest other experi- 
men tal variations that might be made to improve further 
the understanding of successive thermals. It would be of 
interest to  learn whether or not the theory for the third 
thermal would be validated by a statistically more 
significant set of experimental data. Variation of the time 
delay between injections is of interest to test the validity 
of the theory for shorter time delays. An attempt should 
be made also to derive a theory describing the overtaking 
of thermals and to test the theory by simulation experi- 
men ts. Finally, the new theory and laboratory simulations 
should be extended to the more complex case of successive 
thermal interactions in a rotating environment. 

APPENDIX: METHOD OF CHOOSING.AN INITIAL 
VALUE FOR THE COMPUTATIONAL SCHEME 

The initial value for the Runge-Kutta method is esti- 
mated from a solution that is an approximation to the 
true curve. We begin by letting t=s-l in eq (16) to 
displace the curve to the origin. The new equation becomes 

(25) y3(f - 1 ) =t( E2+35 + 2)  

where the prime now denotes a derivative with respect to E .  

A trial solution of the form y=A[” gives 

A3E3“(mAp-’-l)=F(t2+3[+2), (26)  

which has the proper form as [-to only if m= 112. We then 
have 

(27) 
1 
- A4-A3t”2=[2+3[+2 2 

and note that, very near the origin (very small [), we can 
evaluate the coefficient A as A4=4. Thus, the required 
approximate solution is y2=2t, and the only question that 
remains is how near the origin we must choose tl to compute 
an acceptably accurate curve. We satisfied this require- 
ment by computing the curve from [,, y, sufficiently near 
the origin that a trial computation using a starting value 
of t one-tenth as large as E l  would make a difference of no 
more than 2 percent a t  the fnrthest point on our curve. 
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PICTURE OF THE MONTH 
A Turbulent Region 
ARTHUR H. S M I T H ,  JR.-Environmental Technical Applications Center, 
U.S. Air Force, Washington, D.C. 

Satellite photographs of certain atmospheric conditions 
can frequently be used in locating specific regions of high 
risk of turbulence occurence (high risk areas). In  particular, 
the cloud patterns associated with polar and subtropical 
jet streams, which are known as areas of high turbulence 
probability, are distinguishable on satellite photographs. 
These high risk areas are easily verified when they occur 
over data-rich areas and, if similar cloud patterns are 
identified over little-traveled, data-sparse regions, the 
identification and forecasting of turbulence can most 
certainly be improved. 

One such example of cloud patterns associated with a 
high risk area occurred on Dec. 28-29, 1970. The jet stream 

cloud patterns associated with the turbulent areas can be 
seen in figure 1. The clouds associated with the sub- 
tropical jet stream originate in the intertropical conver- 
gence zone (A) and sweep northeastward in an anticy- 
clonically curved arc (B,C). According to Anderson (1969), 
the polar jet stream can be located where there is a change 
from unstable clouds to stable clouds (D,E). While it be- 
comes difficult to pinpoint an exact location of the polar 
jet stream as it continues eastward (F,G,H), careful ex- 
amination does reveal a slight shadowline (F to G) from 
the jet stream cirrus appearing on the lower clouds. 
Mountain-wave clouds associated with both the polar 
jet stream (I) and the subtropical jet stream (J), plus the 

FIGURE 1.-ITOS (improved TIROS operational satellite) 1 view, pass 4246 at 2230 GMT, Dec. 28,1970, and pass 4247 at 0000 GMT, Dec. 29, 
1970. 
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FIGURE 2.-Turbulence reports for the period 0000-0600 GMT, 

Dec. 29, 1970. Height is in hundreds of feet. Je t  streams are 
shown as solid arrows. Areas of cirrus (taken. from fig. 1) are 
enclosed by scalloping. 

area of transverse bands within the subtropical jet cloud 
pattern, are other areas indicative of a high risk of turbu- 
lence observable on meteorological satellite pictures. 

These two jet streams tend to converge in a manner 
similar to that described by Kadlec (1966) with the 
northern (polar) jet stream in a trough-ridge pattern and 
the subtropical (southern) jet in a broad anticyclonically 
curved pattern. I n  general, it has been noted that, if the 
jets converge to within 400 mi or less, a cirrus sheet 
associated with both jets is continuous from the upper 
trough to the next downstream ridge associated with the 
polar jet. It is in and near portions of this cirrus sheet 
that  regions of moderate or greater clear air turbulence 
(CAT) are encountered. I n  this particular case, the two 
jets converge to within about 750 mi and the cirrus 
sheet is not continuous between the two jets. Figure 2 
shows that most of the actual turbulence is in or near the 
cirrus, not in the clear air between the two jets. 

The distribution of turbulence both in the horizontal 
and vertical compares favorably with the “type B” 
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FIGURE 3.-Vertical cross-section of polar and subtropical jet 
streams, cirrus pattern, and associated turbulence areas for model 
type B (Kadlec 1966). PJ is the polar jet core, S T J  is the 
subtropical jet core, the stippled area represents polar and sub- 
tropical jet stream cirrus, and the crosshatched area indicates 
moderate or greater turbulence. 

turbulence model by Kadlec (1966) depicted in figure 3. 
In the horizontal, there is a concentration of moderate and 
severe turbulence reports, associated with the subtropical 
jet stream in the dense-traffic area near Los Angeles, 
Calif., and a lesser number of reports further north and 
east as traffic density decreases. North of the subtropical 
jet over central California, Nevada, and Utah, the air 
is relatively smooth with negative and light turbulence 
reports prevailing. A secondary maximum of moderate 
turbulence appears over northern California, southern 
Oregon, and extreme northern Nevada in association 
with the polar jet and the mountain-wave clouds (I in 

In  the model, turbulence associated with the polar jet 
is a t  a higher altitude (32,000-37,000 ft mean sea level) 
than that with the subtropical jet (26,000-33,000 ft). 
The present example has a similar vertical structure. The 
turbulence with the polar jet stream is generally above 
30,000 f t  while, with the subtropical jet stream, the 
moderate to severe turbulence is concentrated below 
30,000 ft. 

The north-south vertical cross-section (fig. 4) shows a 
pattern similar to figure 3 with the subtropical jet at  a 
higher altitude than the polar jet. An area of coincident, 
strong, horizontal and vertical wind shear is a favored 
region for moderate to severe turbulence (George 1960). 
The area from San Diego, Calif., to just south of Vanden- 
berg Air Force Base, Calif., between 21,000 and 26,000 f t  
is such an area and was characterized by a large number of 
severe turbulence reports. The horizontal and vertical wind 
shear with the polar jet stream at this time is not as strong 
as with the subtropical jet. Also, in the polar jet area, the 
shear has a much greater vertical extent, from near 25,000 
to over 35,000 ft. The turbulence associated with this 
weaker shear is reported as light to moderate and has a 
large vertical extent with a slight concentration between 
about 33,000 and 37,000 ft above mean sea level over the 
jet core. Wind speeds are low and shear is small from north 
of Vandenberg Air Force Base to northern California. 
No turbulence is reported in that area. 

fig. 1). 

May 1972 J Smith J 409 



SdN VBG I 
290 393 

w) 
> 

w 1’ :-IO 

SLE UIL YS 
694 797 896 

FIGURE 4.-A north-south vertical cross-section for 0000 GMT, Dec. 29, 1970. 
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